Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Twente...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/radarc...
Article . 2020 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Generating Synthetic Short-Range FMCW Range-Doppler Maps Using Generative Adversarial Networks and Deep Convolutional Autoencoders

Authors: Lima de Oliveira, Marcio Luiz; Bekooij, Marco Jan Gerrit;

Generating Synthetic Short-Range FMCW Range-Doppler Maps Using Generative Adversarial Networks and Deep Convolutional Autoencoders

Abstract

In this paper, we discuss the usage of Generative Adversarial Networks (GANs) and Deep Convolutional Autoen-coders (CAE) for creating synthetic Range-Doppler (RD) maps of Frequency-Modulated Continuous-Wave (FMCW) radars for a short-range situation with moving objects, based on measured RD maps of pedestrians and cyclists. Instead of using regular mathematical functions or heavy radar simulations, we have used an Artificial Neural Network (ANN) model to generate new data. By using our synthetic data, we can automatically have ground-truth data without the need for manual labor; easily create large synthetic datasets; hardly use much computational power after training. To evaluate our method, we have trained a detector system with just synthetic data, and it was capable of detecting moving objects correctly, on actual Range-Doppler maps, 11.6% better than when using a small dataset.

Related Organizations
Keywords

Synthetic Data, Generative Adversarial Networks, Deep Learning, Radar, FMCW, Neural Network, 22/2 OA procedure, Autoencoder, Convolutional, Doppler-Range

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Top 10%
Top 10%