Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ HighTech and Innovat...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HighTech and Innovation Journal
Article . 2024 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HighTech and Innovation Journal
Article . 2024
Data sources: DOAJ
https://dx.doi.org/10.60692/nw...
Other literature type . 2024
Data sources: Datacite
https://dx.doi.org/10.60692/d0...
Other literature type . 2024
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An Adaptive Differential Evolution with Multiple Crossover Strategies for Optimization Problems

تطور تفاضلي تكيفي مع استراتيجيات تقاطع متعددة لمشاكل التحسين
Authors: Irfan Farda; Arit Thammano;

An Adaptive Differential Evolution with Multiple Crossover Strategies for Optimization Problems

Abstract

The efficiency of a Differential Evolution (DE) algorithm largely depends on the control parameters of the mutation strategy. However, fixed-value control parameters are not effective for all types of optimization problems. Furthermore, DE search capability is often restricted, leading to limited exploration and poor exploitation when relying on a single strategy. These limitations cause DE algorithms to potentially miss promising regions, converge slowly, and stagnate in local optima. To address these drawbacks, we proposed a new Adaptive Differential Evolution Algorithm with Multiple Crossover Strategy Scheme (ADEMCS). We introduced an adaptive mutation strategy that enabled DE to adapt to specific optimization problems. Additionally, we augmented DE with a powerful local search ability: a hunting coordination operator from the reptile search algorithm for faster convergence. To validate ADEMCS effectiveness, we ran extensive experiments using 32 benchmark functions from CEC2015 and CEC2016. Our new algorithm outperformed nine state-of-the-art DE variants in terms of solution quality. The integration of the adaptive mutation strategy and the hunting coordination operator significantly enhanced DE's global and local search capabilities. Overall, ADEMCS represented a promising approach for optimization, offering adaptability and improved performance over existing variants. Doi: 10.28991/HIJ-2024-05-02-02 Full Text: PDF

Keywords

Technological innovations. Automation, Artificial intelligence, Adaptive strategies, Adaptive evolution, Gene, Artificial Intelligence, FOS: Mathematics, Genetics, Swarm Intelligence Optimization Algorithms, Biology, reptile search algorithm., Geography, Physics, HD45-45.2, Optimization Applications, Mathematical optimization, Differential Evolution, Computer science, Ant Colony Optimization, multiple strategies, Archaeology, Particle Swarm Optimization, FOS: Biological sciences, Computer Science, Physical Sciences, Crossover, Thermodynamics, Evolutionary Algorithms, Differential (mechanical device), metaheuristic algorithm, Differential evolution, Mathematics, differential evolution algorithm

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold