Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Digital Repository o...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Digital Repository of NTU
Conference object . 2022
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/iscas4...
Article . 2022 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
DBLP
Conference object
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Recovering Accuracy of RRAM-based CIM for Binarized Neural Network via Chip-in-the-loop Training

Authors: Chong, Yi Sheng; Goh, Wang Ling; Ong, Yew Soon; Nambiar, Vishnu P.; Do, Anh Tuan;

Recovering Accuracy of RRAM-based CIM for Binarized Neural Network via Chip-in-the-loop Training

Abstract

Resistive random access memory (RRAM) based computing-in-memory (CIM) is attractive for edge artificial intelligence (AI) applications, thanks to its excellent energy efficiency, compactness and high parallelism in matrix vector multiplication (MatVec) operations. However, existing RRAM-based CIM designs often require complex programming scheme to precisely control the RRAM cells to reach the desired resistance states so that the neural network classification accuracy is maintained. This leads to large area and energy overhead as well as low RRAM area utilization. Hence, compact RRAMbased CIM with simple pulse-based programming scheme is thus more desirable. To achieve this, we propose a chip-in-the-loop training approach to compensate for the network performance drop due to the stochastic behavior of the RRAM cells. Note that, although the target RRAM cell here is a two-state RRAM (i.e binary, having only high and low resistance states), their inherent analog resistance values are used in the CIM operation. Our experiment using a 4-layer fully-connected binary neural network (BNN) showed that after retraining, the RRAM-based network accuracy can be recovered, regardless of the RRAM resistance distribution and RHRS/RLRS resistance ratio. Agency for Science, Technology and Research (A*STAR) Submitted/Accepted version We thank the Programmatic grant no. A1687b0033, Singapore RIE 2020, AME domain.

Country
Singapore
Keywords

Compute-in-Memory, :Electrical and electronic engineering [Engineering], Resistive Random Access Memory, Binarized Neural Network

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green