
Resistive random access memory (RRAM) based computing-in-memory (CIM) is attractive for edge artificial intelligence (AI) applications, thanks to its excellent energy efficiency, compactness and high parallelism in matrix vector multiplication (MatVec) operations. However, existing RRAM-based CIM designs often require complex programming scheme to precisely control the RRAM cells to reach the desired resistance states so that the neural network classification accuracy is maintained. This leads to large area and energy overhead as well as low RRAM area utilization. Hence, compact RRAMbased CIM with simple pulse-based programming scheme is thus more desirable. To achieve this, we propose a chip-in-the-loop training approach to compensate for the network performance drop due to the stochastic behavior of the RRAM cells. Note that, although the target RRAM cell here is a two-state RRAM (i.e binary, having only high and low resistance states), their inherent analog resistance values are used in the CIM operation. Our experiment using a 4-layer fully-connected binary neural network (BNN) showed that after retraining, the RRAM-based network accuracy can be recovered, regardless of the RRAM resistance distribution and RHRS/RLRS resistance ratio. Agency for Science, Technology and Research (A*STAR) Submitted/Accepted version We thank the Programmatic grant no. A1687b0033, Singapore RIE 2020, AME domain.
Compute-in-Memory, :Electrical and electronic engineering [Engineering], Resistive Random Access Memory, Binarized Neural Network
Compute-in-Memory, :Electrical and electronic engineering [Engineering], Resistive Random Access Memory, Binarized Neural Network
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
