
Consider the following communication scenario. An n-dlmensional source with memory is observed by K isolated encoders via parallel channels, who causally compress their observations to transmit to the decoder via noiseless rate-constrained links. At each time instant, the decoder receives K new codewords from the observers, combines them with the past received codewords, and produces a minimum- distortion estimate of the latest block of n source symbols. This scenario extends the classical one-shot CEO problem to multiple rounds of communication with communicators maintaining memory of the past.We prove a coding theorem showing that the minimum asymptotically (as n → ∞) achievable sum rate required to achieve a target distortion is equal to the directed mutual information from the observers to the decoder minimized subject to the distortion constraint and the separate encoding constraint. For the Gauss-Markov source observed via K parallel AWGN channels, we solve that minimal directed mutual information problem, thereby establishing the minimum asymptotically achievable sum rate. Finally, we explicitly bound the rate loss due to a lack of communication among the observers; that bound is attained with equality in the case of identical observation channels.The general coding theorem is proved via a new nonasymptotic bound that uses stochastic likelihood coders and whose asymptotic analysis yields an extension of the Berger-Tung inner bound to the causal setting. The analysis of the Gaussian case is facilitated by reversing the channels of the observers.
distributed source coding, Gauss-Markov source, Berger-Tung bound, causal rate-distortion theory, LQG control, CEO problem, 004, 510
distributed source coding, Gauss-Markov source, Berger-Tung bound, causal rate-distortion theory, LQG control, CEO problem, 004, 510
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
