
Multiview video coding (MVC) has recently received considerable attention. It is proposed as an extension of H.264/Advanced Video Coding (AVC) standard for multiple video source compression. To resolve the extremely high computational complexity of MVC (and in fact other AVC techniques), suitable parallel algorithms need to be developed that are amenable to implementation on low-cost massively parallel architecture, platforms that have found a common place due to recent advances in the parallel computer architecture. The high complexity of MVC is due to its prediction structure, where motion estimation (ME) between the frames and disparity estimation (DE) between the views contribute to more than 99% of overall complexity of the coder. This paper presents the development and implementation of a scalable massively parallel fast search algorithm to significantly reduce the computational cost of ME/DE over the current best available full block matching, and suboptimal fast search algorithms. The proposed massively parallel fast search algorithm (DZfast), when evaluated over eight views, outperforms the existing full search and fast search MVC algorithms by a factor of up to 245.8 and 8.4, respectively. This speedup comes at no or minute loss in rate-distortion performance.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 15 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
