Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Proteome ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Proteome Research
Article . 2024 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Using Data-Driven Algorithms with Large-Scale Plasma Proteomic Data to Discover Novel Biomarkers for Diagnosing Depression

Authors: Simeng Ma; Ruiling Li; Qian Gong; Honggang Lv; Zipeng Deng; Beibei Wang; Lihua Yao; +4 Authors

Using Data-Driven Algorithms with Large-Scale Plasma Proteomic Data to Discover Novel Biomarkers for Diagnosing Depression

Abstract

Given recent technological advances in proteomics, it is now possible to quantify plasma proteomes in large cohorts of patients to screen for biomarkers and to guide the early diagnosis and treatment of depression. Here we used CatBoost machine learning to model and discover biomarkers of depression in UK Biobank data sets (depression n = 4,479, healthy control n = 19,821). CatBoost was employed for model construction, with Shapley Additive Explanations (SHAP) being utilized to interpret the resulting model. Model performance was corroborated through 5-fold cross-validation, and its diagnostic efficacy was evaluated based on the area under the receiver operating characteristic (AUC) curve. A total of 45 depression-related proteins were screened based on the top 20 important features output by the CatBoost model in six data sets. Of the nine diagnostic models for depression, the performance of the traditional risk factor model was improved after the addition of proteomic data, with the best model having an average AUC of 0.764 in the test sets. KEGG pathway analysis of 45 screened proteins showed that the most significant pathway involved was the cytokine-cytokine receptor interaction. It is feasible to explore diagnostic biomarkers of depression using data-driven machine learning methods and large-scale data sets, although the results require validation.

Related Organizations
Keywords

Proteomics, Machine Learning, Male, ROC Curve, Proteome, Depression, Area Under Curve, Humans, Female, Blood Proteins, Biomarkers, Algorithms

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!