Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Journal of Biom...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Journal of Biomedical and Health Informatics
Article . 2022 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Explainable Dynamic Multimodal Variational Autoencoder for the Prediction of Patients With Suspected Central Precocious Puberty

Authors: Yiming Xu; Xiaohong Liu; Liyan Pan; Xiaojian Mao; Huiying Liang; Guangyu Wang; Ting Chen;

Explainable Dynamic Multimodal Variational Autoencoder for the Prediction of Patients With Suspected Central Precocious Puberty

Abstract

Central precocious puberty (CPP) is the most common type of precocious puberty and has a significant effect on children. A gonadotropin-releasing hormone (GnRH)-stimulation test is the gold standard for confirming CPP. This test, however, is costly and unpleasant for patients. Therefore, it is critical to developing alternative methods for CPP diagnosis in order to alleviate patient suffering. This study aims to develop an artificial intelligence (AI) diagnostic system for predicting response to the GnRH-stimulation test using data from laboratory tests, electronic health records (EHRs), and pelvic ultrasonography and left-hand radiography reports. The challenges are in integrating these multimodal features into a comprehensive deep learning model in order to achieve an accurate diagnosis while also accounting for the missing or incomplete modalities. To begin, we developed a dynamic multimodal variational autoencoder (DMVAE) that can exploit intrinsic correlations between different modalities to impute features for missing modalities. Next, we combined features from all modalities to predict the outcome of a CPP diagnosis. The experimental results (AUROC 0.9086) demonstrate that our DMVAE model is superior to standard methods. Additionally, we showed that by setting appropriate operating thresholds, clinicians could diagnose about two-thirds of patients with confidence (1.0 specificity). Only about one-third of patients require confirmation of their diagnoses using GnRH (or GnRH analog)-stimulation tests. To interpret the results, we implemented an explainer Shapley additive explanation (SHAP) to analyze the local and global feature attributions.

Related Organizations
Keywords

Gonadotropin-Releasing Hormone, Artificial Intelligence, Humans, Puberty, Precocious, Follicle Stimulating Hormone, Luteinizing Hormone, Child

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!