
arXiv: 1809.09569
The need to efficiently calculate first- and higher-order derivatives of increasingly complex models expressed in Python has stressed or exceeded the capabilities of available tools. In this work, we explore techniques from the field of automatic differentiation (AD) that can give researchers expressive power, performance and strong usability. These include source-code transformation (SCT), flexible gradient surgery, efficient in-place array operations, higher-order derivatives as well as mixing of forward and reverse mode AD. We implement and demonstrate these ideas in the Tangent software library for Python, the first AD framework for a dynamic language that uses SCT.
Software Engineering (cs.SE), FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Science - Software Engineering, Statistics - Machine Learning, Machine Learning (stat.ML), Machine Learning (cs.LG)
Software Engineering (cs.SE), FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Science - Software Engineering, Statistics - Machine Learning, Machine Learning (stat.ML), Machine Learning (cs.LG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
