Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS Cnrarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Conference object . 2019
Data sources: IRIS Cnr
https://doi.org/10.1117/12.253...
Article . 2019 . Peer-reviewed
Data sources: Crossref
CNR ExploRA
Conference object . 2019
Data sources: CNR ExploRA
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Assessment of cumulative discriminant analysis for cloud detection in the ESA PROBA-V Round Robin exercise

Authors: U Amato; MF Carfora; G Masiello; C Serio;

Assessment of cumulative discriminant analysis for cloud detection in the ESA PROBA-V Round Robin exercise

Abstract

Cloud detection is a critical issue for satellite optical remote sensing, since potential errors in cloud masking can be translated directly into significant uncertainty in the retrieved downstream geophysical products. The problem is particularly challenging when only of a limited number of spectral bands is available, and thermal infrared bands are lacking. This is the case of Proba-V instrument, for which the European Space Agency (ESA) carried out a dedicated Round Robin exercise, aimed at intercomparing several cloud detection algorithms to better understand their advantages and drawbacks for various clouds and surface conditions, and to learn lessons on cloud detection in the VNIR and SWIR domain for land and coastal water remote sensing. The present contribution is aimed at a thorough quality assessment of the results of the cloud detection approach we proposed, based on Cumulative Discriminant Analysis. Such a statistical method relies on the empirical cumulative distribution function of the measured reflectance in clear and cloudy conditions to produce a decision rule. It can be adapted to the user's requirements in terms of preferred levels for both type I and type II errors. In order to obtain a fully automatic procedure, we choose as a training dataset a subset of the full Proba-V scenes for which a cloud mask is estimated by a consolidated algorithm (silver standard), that is from either SEVIRI, MODIS or both sensors. Within this training set, different subsets have been setup according to the different types of surface underlying scenes (water, vegetation, bare land, urban, and snow/ice). We present the analysis of the cloud classification errors for a range of such test scenes to yield important inferences on the efficiency and accuracy of the proposed methodology when applied to different types of surfaces.

Keywords

Spatial resolution, MODIS, Error analysis, Satellites, Sensors, Statistical analysis, Clouds;, Detection and tracking algorithms;, Reflectivity

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!