
doi: 10.1002/msd2.12016
AbstractFor linear mechanical systems, the transfer matrix method is one of the most efficient modeling and analysis methods. However, in contrast to classical modeling strategies, the final eigenvalue problem is based on a matrix which is a highly nonlinear function of the eigenvalues. Therefore, classical strategies for sensitivity analysis of eigenvalues w.r.t. system parameters cannot be applied. The paper develops two specific strategies for this situation, a direct differentiation strategy and an adjoint variable method, where especially the latter is easy to use and applicable to arbitrarily complex chain or branched multibody systems. Like the system analysis itself, it is able to break down the sensitivity analysis of the overall system to analytically determinable derivatives of element transfer matrices and recursive formula which can be applied along the transfer path of the topology figure. Several examples of different complexity validate the proposed approach by comparing results to analytical calculations and numerical differentiation. The obtained procedure may support gradient‐based optimization and robust design by delivering exact sensitivities.
TA168, sensitivity analysis, transfer matrix method, TJ1-1570, direct differentiation, Mechanical engineering and machinery, adjoint variable method, Systems engineering
TA168, sensitivity analysis, transfer matrix method, TJ1-1570, direct differentiation, Mechanical engineering and machinery, adjoint variable method, Systems engineering
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 44 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
