Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://link.springe...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://link.springer.com/cont...
Part of book or chapter of book
Data sources: UnpayWall
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2008 . Peer-reviewed
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hardware Verification: Techniques, Methodology and Solutions

Authors: Sharad Malik;

Hardware Verification: Techniques, Methodology and Solutions

Abstract

Hardware verification has been one of the biggest drivers of formal verification research, and has seen the greatest practical impact of its results. The use of formal techniques has not been uniformly successful here -- with equivalence checking widely used, assertion-based verification seeing increased adoption, and general property checking and theorem proving seeing only limited use. I will first examine the reasons for this varied success and show that for efficient techniques to translate to solutions they must be part of an efficient methodology and be scalable. Next I will describe specific efforts addressing each of these critical requirements for the verification of emerging computing systems. A significant barrier in enabling efficient techniques to flow into efficient methodology is the need for human intervention in this process. I argue that in large part this is due to the gap between functional design specification, which is still largely in natural language, and structural design description at the register-transfer level (RTL). This gap is largely filled by humans, leading to a methodology which is error-prone, incomplete and inefficient. To overcome this, we need formal functional specification and a way to bridge the gap from this specification to structural RTL. In this direction I will present a modeling framework with design models at two levels -- architectural and microarchitectural. The architectural model provides for a functional specification, and the microarchitectural model connects this to a physical implementation. I will illustrate how this enables greater automation in verification. A major challenge in verification techniques providing scalable solutions is the inherent intractability of the problem. This is only getting worse with increasing complexity and is reflected in the increasing number of bug escapes into silicon. I argue that existing verification solutions need to be augmented with runtime validation techniques, through online error-checking and recovery in hardware. I will illustrate this with examples from emerging multi-core architectures. I will also discuss the complementary roles of formal techniques and runtime validation in a cooperative methodology.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
bronze