Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio istituziona...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2018
Data sources: zbMATH Open
Fundamenta Informaticae
Article . 2018 . Peer-reviewed
Data sources: Crossref
Fundamenta Informaticae
Article . 2018
Data sources: mEDRA
DBLP
Article
Data sources: DBLP
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Reasoning on Datalog± Ontologies with Abductive Logic Programming

Reasoning on Datalog\(^\pm\) ontologies with abductive logic programming
Authors: Marco Gavanelli; Evelina Lamma; Fabrizio Riguzzi; Elena Bellodi; Riccardo Zese; Giuseppe Cota;

Reasoning on Datalog± Ontologies with Abductive Logic Programming

Abstract

Ontologies form the basis of the Semantic Web. Description Logics (DLs) are often the languages of choice for modeling ontologies. Integration of DLs with rules and rule-based reasoning is crucial in the so-called Semantic Web stack vision - a complete stack of recommendations and languages each based on and/or exploiting the underlying layers - which adds new features to the standards used in theWeb. The growing importance of the integration between DLs and rules is proved by the definition of the profile OWL 2 RL1 and the definition of languages such as RIF2 and SWRL3. Datalog± is an extension of Datalog which can be used for representing lightweight ontologies and expressing some languages of the DL-Lite family, with tractable query answering under certain language restrictions. In particular, it is able to express the DL-Lite version defined in OWL. In this work, we show that Abductive Logic Programming (ALP) can be used to represent Datalog± ontologies, supporting query answering through an abductive proof procedure, and smoothly achieving the integration of ontologies and rule-based reasoning. Often, reasoning with DLs means finding explanations for the truth of queries, that are useful when debugging ontologies and to understand answers given by the reasoning process. We show that reasoning under existential rules can be expressed by ALP languages and we present a solving system, which is experimentally proved to be competitive with DL reasoning systems. In particular, we consider an ALP framework named 𝒮CIFF derived from the IFF abductive framework. Forward and backward reasoning is naturally supported in this ALP framework. The 𝒮CIFF language smoothly supports the integration of rules, expressed in a Logic Programming language, with Datalog± ontologies, mapped into 𝒮CIFF (forward) integrity constraints. The main advantage is that this integration is achieved within a single language, grounded on abduction in computational logic, and able to model existential rules.

Country
Italy
Related Organizations
Keywords

Knowledge representation, Logic programming, 004

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green