Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Tzu Chi Medical Jour...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Tzu Chi Medical Journal
Article . 2025 . Peer-reviewed
License: CC BY NC SA
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Tzu Chi Medical Journal
Article . 2025
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Exosomal long noncoding RNAs and microRNAs in colorectal cancer

Authors: Yun Yen; Tang-Yuan Chu; Ruo-Chia Tseng;

Exosomal long noncoding RNAs and microRNAs in colorectal cancer

Abstract

ABSTRACT This review focuses on the multifaceted roles of exosomal noncoding RNAs (ncRNAs) in colorectal cancer (CRC), utilizing the provided document as the primary source of information. Exosomes, nanoscale vesicles ranging from 30 to 150 nm, act as crucial mediators of intercellular communication, encapsulating bioactive molecules such as microRNAs (miRNAs) and long ncRNAs (lncRNAs). The biogenesis of exosomes involves the endocytic pathway, including the formation of multivesicular bodies and subsequent release of intraluminal vesicles into the extracellular space. This process is regulated by the endosomal sorting complex required for transport (ESCRT) machinery and other ESCRT-independent mechanisms, as well as RNA-binding proteins (RBPs) that selectively package ncRNAs. MiRNAs, shorter single-stranded RNA molecules, regulate gene expression post-transcriptionally by binding to target mRNAs, leading to translational repression or mRNA degradation. LncRNAs, longer RNA molecules, are involved in chromatin remodeling and transcriptional regulation and act as competing endogenous RNAs that modulate miRNA availability. Exosomal ncRNAs play a crucial role in tumorigenesis, where certain miRNAs promote proliferation while others act as tumor suppressors. Furthermore, these ncRNAs are central to the epithelial–mesenchymal transition, a critical process that facilitates metastasis. They also play a role in chemoresistance by modulating drug metabolism and apoptotic pathways. Exosomal ncRNAs also show promise as diagnostic and prognostic biomarkers due to their presence in body fluids and their association with disease progression. Moreover, they hold potential as therapeutic agents through RNA-based therapeutics and exosome-based drug delivery. The challenges involve standardizing exosome research, elucidating the underlying mechanisms, and ensuring successful clinical translation.

Related Organizations
Keywords

long noncoding rnas, R, biomarkers, Medicine, colorectal cancer, Review Article, micrornas, exosomal ncrnas

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
gold
Related to Research communities
Cancer Research