Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio della ricer...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Computer Communications
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

AFAFed—Asynchronous Fair Adaptive Federated learning for IoT stream applications

Authors: Baccarelli E.; Scarpiniti M.; Momenzadeh A.; Sarv Ahrabi S.;

AFAFed—Asynchronous Fair Adaptive Federated learning for IoT stream applications

Abstract

In this paper, we design, analyze the convergence properties, address the implementation aspects, and numerically test the performance of AFAFed. This is a novel Asynchronous Fair Adaptive Federated learning framework for stream-oriented IoT application environments, which are featured by time-varying operating conditions, heterogeneous resource-limited devices (i.e., coworkers), non-i.i.d. local training data and unreliable communication links. The key new of AFAFed is the synergic co-design of: (i) two sets of adaptively tuned tolerance thresholds and fairness coefficients at the coworkers and central server, respectively; and, (ii) a distributed adaptive mechanism, which allows each coworker to adaptively tune own communication rate. The convergence properties of AFAFed under (possibly) non-convex loss functions is guaranteed by a set of new analytical bounds, which formally unveil the impact on the resulting AFAFed convergence rate of a number of Federated Learning (FL) parameters, like, first and second moments of the per-coworker number of consecutive model updates, data skewness, communication packet-loss probability, and maximum/minimum values of the (adaptively tuned) mixing coefficient used for model aggregation. Extensive numerical tests show that AFAFed is capable to improve test accuracy by up to 20% and reduce training time by up to 50%, compared to state-of-the-art FL schemes, even under challenging learning scenarios featured by deep Machine Learning (ML) models, data skewness, coworker heterogeneity and unreliable communication.

Related Organizations
Keywords

Adaptive asynchronous FL; Distributed ML; Heterogeneous fog computing ecosystems; Non-i.i.d. data; Personalization-vs.-generalization trade-off

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!