Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Algorithmicaarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Algorithmica
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Algorithmica
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2020
Data sources: PubMed Central
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2020
Data sources: zbMATH Open
DBLP
Article
Data sources: DBLP
Algorithmica
Article . 2020
License: CC BY
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Stable Matchings with Covering Constraints: A Complete Computational Trichotomy

Stable matchings with covering constraints: a complete computational trichotomy
Authors: Matthias Mnich; Ildikó Schlotter;

Stable Matchings with Covering Constraints: A Complete Computational Trichotomy

Abstract

AbstractStable matching problems with lower quotas are fundamental in academic hiring and ensuring operability of rural hospitals. Only few tractable (polynomial-time solvable) cases of stable matching with lower quotas have been identified; most such problems are $$\mathsf {NP}$$NP-hard and also hard to approximate (Hamada et al. in Algorithmica 74(1):440–465, 2016). We therefore consider stable matching problems with lower quotas under a relaxed notion of tractability, namely fixed-parameter tractability. By cloning hospitals we focus on the case when all hospitals have upper quota equal to 1, which generalizes the setting of “arranged marriages” first considered by Knuth (Mariages stables et leurs relations avec d’autres problèmes combinatoires, Les Presses de l’Université de Montréal, Montreal, 1976). We investigate how a set of natural parameters, namely the maximum length of preference lists for men and women, the number of distinguished men and women, and the number of blocking pairs allowed determine the computational tractability of this problem. Our main result is a complete complexity trichotomy: for each choice of parameters we either provide a polynomial-time algorithm, or an $$\mathsf {NP}$$NP-hardness proof and fixed-parameter algorithm, or $$\mathsf {NP}$$NP-hardness proof and $$\mathsf {W}[1]$$W[1]-hardness proof. As corollary, we negatively answer a question by Hamada et al. (Algorithmica 74(1):440–465, 2016) by showing fixed-parameter intractability parameterized by optimal solution size. We also classify all cases of one-sided constraints where only women may be distinguished.

Countries
Germany, Hungary, Germany
Keywords

stable marriage, Lower quotas, fixed-parameter algorithms, QA Mathematics / matematika, Matching models, Parameterized complexity, tractability and kernelization, Fixed-parameter algorithms, Article, lower quotas, Computational difficulty of problems (lower bounds, completeness, difficulty of approximation, etc.), Analysis of algorithms, Stable marriage

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Top 10%
Green
hybrid