Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Translational Behavi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Translational Behavioral Medicine
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Motivating cascade testing for familial hypercholesterolemia: applying the extended parallel process model for clinician communication

Authors: Gemme Campbell-Salome; Nicole L Walters; Ilene G Ladd; Amanda Sheldon; Catherine Davis Ahmed; Andrew Brangan; Megan N McMinn; +5 Authors

Motivating cascade testing for familial hypercholesterolemia: applying the extended parallel process model for clinician communication

Abstract

Abstract Motivating at-risk relatives to undergo cascade testing for familial hypercholesterolemia (FH) is critical for diagnosis and lifesaving treatment. As credible sources of information, clinicians can assist in family communication about FH and motivate cascade testing uptake. However, there are no guidelines regarding how clinicians should effectively communicate with probands (the first person diagnosed in the family) and at-risk relatives. Individuals and families with FH can inform our understanding of the most effective communications to promote cascade testing. Guided by the extended parallel process model (EPPM), we analyzed the perspectives of individuals and families with FH for effective messaging clinicians can use to promote cascade testing uptake. We analyzed narrative data from interviews and surveys collected as part of a larger mixed-methods study. The EPPM was used to identify message features recommended by individuals and families with FH that focus on four key constructs (severity, susceptibility, response efficacy, self-efficacy) to promote cascade testing. Participants included 22 individuals from 11 dyadic interviews and 98 survey respondents. Participants described prioritizing multiple messages that address each EPPM construct to alert relatives about their risk. They illustrated strategies clinicians could use within each EPPM construct to communicate to at-risk relatives about the importance of pursuing diagnosis via cascade testing and subsequent treatment for high cholesterol due to FH. Findings provide guidance on effective messaging to motivate cascade testing uptake for FH and demonstrates how the EPPM may guide communication with at-risk relatives about genetic risk and motivate cascade testing broadly.

Keywords

Hyperlipoproteinemia Type II, Risk Factors, Communication, Humans, Genetic Testing, Original Research

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Top 10%
Green
hybrid