Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Alexandria Engineeri...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Alexandria Engineering Journal
Article . 2025 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Alexandria Engineering Journal
Article . 2025
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

SAMFNet: Scene-aware sampling and multi-stage fusion for multimodal 3D object detection

Authors: Baotong Wang; Chenxing Xia; Xiuju Gao; Bin Ge; Kuan-Ching Li; Xianjin Fang; Yan Zhang; +1 Authors

SAMFNet: Scene-aware sampling and multi-stage fusion for multimodal 3D object detection

Abstract

Recently, multimodal 3D object detection (M3OD) that fuses the complementary information from LiDAR data and RGB images has gained significant attention. However, the inherent structural differences between point clouds and images pose fusion challenges, significantly hindering the exploration of correlations within multimodal data. To address this issue, this paper introduces an enhanced multimodal 3D object detection framework (SAMFNet), which leverages virtual point clouds generated from depth completion. Specifically, we design a scene-aware sampling module (SASM) that employs tailored sampling strategies for different bins based on the density distribution of point clouds. This effectively alleviates the detection bias problem while ensuring the key information of virtual points, significantly reducing the computational cost. In addition, we introduce a multi-stage feature fusion module (MSFFM) that embeds point-level and regional-adaptive feature fusion strategies to generate more informative multimodal features by fusing features with different granularities. To further improve the accuracy of model detection, we also introduce a confidence prediction branch unit (CPBU), which improves the detection accuracy by predicting the confidence of feature classification in the intermediate stage. Extensive experiments on the challenging KITTI dataset demonstrate the validity of our model.

Keywords

Scene-aware sampling, Virtual point clouds, Multimodal 3D object detection, TA1-2040, Engineering (General). Civil engineering (General), Multi-stage feature fusion

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold