Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Digital & Analog Cabled Systems
Article . 2016 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Performance of linear and non‐linear precoders in G.fast ultra‐broadband DSL networks

Authors: Chuah, Teong Chee; Ng, Yin Hoe; Zainal Abidin, Ahmadun Nijar; Hashim, Nabihah; Asrokin, Azhari;

Performance of linear and non‐linear precoders in G.fast ultra‐broadband DSL networks

Abstract

SummaryThe new International Telecommunication Union Telecommunication G.fast standard for next‐generation ultra‐broadband digital subscriber line systems has stipulated mandatory use of vectoring for crosstalk mitigation. In this paper, we study the performance of downstream precoders in G.fast networks utilising the extended bandwidth up to 212 MHz. In particular, the issue of strong crosstalk encountered in practical copper cable bundles at high frequencies giving rise to channel matrices which are not row‐wise diagonally dominant (RWDD) as predicted theoretically, as well as the ramification of deploying precoders designed based on the RWDD assumption in practical G.fast channels are studied. To serve these purposes, an enhanced stochastic far‐end crosstalk (FEXT) model which provides distinct FEXT transfer functions with the dispersion range characterised experimentally whilst encompassing the dual‐slope FEXT encountered in non‐RWDD cables is used for evaluating the performance of precoders in diverse G.fast deployment scenarios. Furthermore, the performance sensitivity of precoders under realistic amount of channel estimation errors is investigated on a common framework, allowing a direct and fair comparison between linear and non‐linear precoders. Results show that the nonlinear optimal precoder outperforms linear precoders in all channel conditions; however, the former is found to be slightly more sensitive to channel estimation errors on shorter loops. Copyright © 2016 John Wiley & Sons, Ltd.

Related Organizations
Keywords

radio, TK5101-6720 Telecommunication. Including telegraphy, 621, telephone, television, radar

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!