
Accurate segmentation of brain tissue has important guiding significance and practical application value for the diagnosis of brain diseases. Brain magnetic resonance imaging (MRI) has the characteristics of high dimensionality and large sample size. Such datasets create considerable computational complexity in image processing. To efficiently process large sample data, this article integrates the proposed block clustering strategy with the classic fuzzy C-means clustering (FCM) algorithm and proposes a block-based integrated FCM clustering algorithm (BI-FCM). The algorithm first performs block processing on each image and then clusters each subimage using the FCM algorithm. The cluster centers for all subimages are again clustered using FCM to obtain the final cluster center. Finally, the distance from each pixel to the final cluster center is obtained, and the corresponding division is performed according to the distance. The dataset used in this experiment is the Simulated Brain Database (SBD). The results show that the BI-FCM algorithm addresses the large sample processing problem well, and the theory is simple and effective.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
