Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Novel Segmentation Method for Brain MRI Using a Block-Based Integrated Fuzzy C-Means Clustering Algorithm

Authors: Hui Zhang; Hongjie Zhang;

A Novel Segmentation Method for Brain MRI Using a Block-Based Integrated Fuzzy C-Means Clustering Algorithm

Abstract

Accurate segmentation of brain tissue has important guiding significance and practical application value for the diagnosis of brain diseases. Brain magnetic resonance imaging (MRI) has the characteristics of high dimensionality and large sample size. Such datasets create considerable computational complexity in image processing. To efficiently process large sample data, this article integrates the proposed block clustering strategy with the classic fuzzy C-means clustering (FCM) algorithm and proposes a block-based integrated FCM clustering algorithm (BI-FCM). The algorithm first performs block processing on each image and then clusters each subimage using the FCM algorithm. The cluster centers for all subimages are again clustered using FCM to obtain the final cluster center. Finally, the distance from each pixel to the final cluster center is obtained, and the corresponding division is performed according to the distance. The dataset used in this experiment is the Simulated Brain Database (SBD). The results show that the BI-FCM algorithm addresses the large sample processing problem well, and the theory is simple and effective.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!