
A proven approach for unconstrained minimization of a function, f(x), x ∈ ℜ n , is to build and solve a quadratic model at a local estimate x (k) i.e. apply the trust region method. In this paper we propose a direct extension of this modeling approach to constrained minimization. A local quadratic model of both the objective function and the constraints is built. This model is too hard to solve, so it is relaxed using the Lagrangian dual, which is then solved by semidefinite programming techniques. The key ingredient in this approach is the equivalence between the Lagrangian and semidefinite relaxations.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
