Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao zbMATH Openarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 1999
Data sources: zbMATH Open
Journal of Mathematical Physics
Article . 1999 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Quasilinearization method and its verification on exactly solvable models in quantum mechanics

Authors: Mandelzweig, V. B.;

Quasilinearization method and its verification on exactly solvable models in quantum mechanics

Abstract

The proof of the convergence of the quasilinearization method of Bellman and Kalaba, whose origin lies in the theory of linear programming, is extended to large and infinite domains and to singular functionals in order to enable the application of the method to physical problems. This powerful method approximates solution of nonlinear differential equations by treating the nonlinear terms as a perturbation about the linear ones, and is not based, unlike perturbation theories, on existence of some kind of small parameter. The general properties of the method, particularly its uniform and quadratic convergence, which often also is monotonic, are analyzed and verified on exactly solvable models in quantum mechanics. Namely, application of the method to scattering length calculations in the variable phase method shows that each approximation of the method sums many orders of the perturbation theory and that the method reproduces properly the singular structure of the exact solutions. The method provides final and reasonable answers for infinite values of the coupling constant and is able to handle even super singular potentials for which each term of the perturbation theory is infinite and the perturbation expansion does not exist.

Related Organizations
Keywords

nonlinear differential equations, method to scattering length, Perturbation theories for operators and differential equations in quantum theory, linear programming, variable phase method, Nonlinear ordinary differential equations and systems, uniform and quadratic convergence, Computational methods for problems pertaining to quantum theory, infinite domains, infinite values of the coupling constant, Bellman and Kalaba, singular functionals, Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics, super singular potentials, perturbation theory

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    61
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
61
Top 10%
Top 1%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!