
With the increasing demand for storing images, traditional image compression methods face challenges in balancing the compressed size and image quality. However, the hybrid quantum-classical model can recover this weakness by using the advantage of qubits. In this study, we upgrade a quantum image compression algorithm within parameterized quantum circuits. Our approach encodes image data as unitary operator parameters and applies the quantum compilation algorithm to emulate the encryption process. By utilizing first-order Taylor expansion, we significantly reduce both the computational cost and loss, better than the previous version. Experimental results on benchmark images, including Lenna and Cameraman, show that our method achieves up to 86\% reduction in the number of iterations while maintaining a lower compression loss, better for high-resolution images. The results confirm that the proposed algorithm provides an efficient and scalable image compression mechanism, making it a promising candidate for future image processing applications.
FOS: Computer and information sciences, Quantum Physics, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition, FOS: Physical sciences, Quantum Physics (quant-ph)
FOS: Computer and information sciences, Quantum Physics, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition, FOS: Physical sciences, Quantum Physics (quant-ph)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
