Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Computation Speeds and Memory Requirements of Mesh-Type ICRP Reference Computational Phantoms in Geant4, MCNP6, and PHITS

Authors: Yeon Soo, Yeom; Min Cheol, Han; Chansoo, Choi; Haegin, Han; Bangho, Shin; Takuya, Furuta; Chan Hyeong, Kim;

Computation Speeds and Memory Requirements of Mesh-Type ICRP Reference Computational Phantoms in Geant4, MCNP6, and PHITS

Abstract

Abstract Recently, Task Group 103 of the International Commission on Radiological Protection completed the development of new adult male and female mesh-type reference computational phantoms, which are planned for use in future International Commission on Radiological Protection dose coefficient calculations. In the present study, the performance of major Monte Carlo particle transport codes, i.e., Geant4, MCNP6, and PHITS, were investigated for the mesh-type reference computational phantoms by performing transport simulations of photons, electrons, neutrons, and helium ions for some external and internal exposures, and simultaneously measuring the memory usage, initialization time, and computation speed of the adult male mesh-type reference computational phantom in the codes. The measured results were then compared with the values measured with the current adult male voxel-type reference computational phantom in International Commission on Radiological Protection Publication 110 as well as five voxel phantoms produced from the adult male mesh-type reference computational phantom with different voxel resolutions, i.e., 0.1 × 0.1 × 0.1 mm3, 0.6 × 0.6 × 0.6 mm3, 1 × 1 × 1 mm3, 2 × 2 × 2 mm3, and 4 × 4 × 4 mm3. From the results, it was found that in all of the codes, the memory usage of the mesh-type reference computational phantom is greater than that of the voxel-type reference computational phantom and the lowest resolution voxelized phantom, but it is sufficiently lower than the maximum memory, 64 GB, that can be installed in a personal computer. The required initialization time of the mesh-type reference computational phantom and of the voxel-type reference computational phantom and voxelized phantoms in resolutions lower than 0.6 × 0.6 × 0.6 mm3 was less than a few minutes in all of the codes. As for the computation speed among the codes, MCNP6 showed the worst performance for the mesh-type reference computational phantom, which was slower than that for the voxel-type reference computational phantom by up to ~50 times and slower than that for all of the voxelized phantoms by up to ~40 times. By contrast, PHITS showed the best performance for the mesh-type reference computational phantom, which was faster than that for the voxel-type reference computational phantom by up to ~3 times and faster than that for all of the voxelized phantoms by up to ~20 times. This high performance of PHITS is indeed encouraging considering that it is used nowadays by the International Commission on Radiological Protection for most dose coefficient calculations.

Keywords

Adult, Male, Phantoms, Imaging, International Agencies, Radiation Dosage, Reference Values, Humans, Computer Simulation, Female, Radiometry, Monte Carlo Method, Algorithms

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!