Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/micro6...
Article . 2024 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2023
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Conference object
Data sources: DBLP
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

TACOS: Topology-Aware Collective Algorithm Synthesizer for Distributed Machine Learning

Authors: William Won; Midhilesh Elavazhagan; Sudarshan Srinivasan; Swati Gupta 0001; Tushar Krishna;

TACOS: Topology-Aware Collective Algorithm Synthesizer for Distributed Machine Learning

Abstract

The surge of artificial intelligence, particularly large language models, has driven the rapid development of large-scale machine learning clusters. Executing distributed models on these clusters is often constrained by communication overhead, making efficient utilization of available network resources crucial. As a result, the routing algorithm employed for collective communications (i.e., collective algorithms) plays a pivotal role in determining overall performance. Unfortunately, existing collective communication libraries for distributed machine learning are limited by a fixed set of basic collective algorithms. This limitation hinders communication optimization, especially in modern clusters with heterogeneous and asymmetric topologies. Furthermore, manually designing collective algorithms for all possible combinations of network topologies and collective patterns requires heavy engineering and validation efforts. To address these challenges, this paper presents TACOS, an autonomous synthesizer capable of automatically generating topology-aware collective algorithms tailored to specific collective patterns and network topologies. TACOS is highly flexible, synthesizing an All-Reduce algorithm for a heterogeneous 128-NPU system in just 1.08 seconds, while achieving up to a 4.27x performance improvement over state-of-the-art synthesizers. Additionally, TACOS demonstrates better scalability with polynomial synthesis times, in contrast to NP-hard approaches which only scale to systems with tens of NPUs. TACOS can synthesize for 40K NPUs in just 2.52 hours.

Contains 12 main pages, 21 figures, 5 tables. Artifact appendix attached

Keywords

FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Science - Distributed, Parallel, and Cluster Computing, Distributed, Parallel, and Cluster Computing (cs.DC), Machine Learning (cs.LG)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average
Green