Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IET Microwaves Anten...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IET Microwaves Antennas & Propagation
Article . 2016 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Synthesis of planar sparse arrays by perturbed compressive sampling framework

Authors: Fei Yan; Peng Yang; Feng Yang; Tao Dong;

Synthesis of planar sparse arrays by perturbed compressive sampling framework

Abstract

Recently, compressive sensing (CS) theory has been applied for synthesising maximally sparse arrays, in which the best subset of sampling element locations is chosen to compose a sparse array for matching a desired radiation pattern. However, their performances are strongly depended on the proper setting of the initial sampling locations, which are typically obtained by gridding the continuous array aperture. Such a setting is usually hard to handle for large planar array synthesis. To address this problem, a precision and effective method based on the perturbed compressive sampling (PCS) is proposed. Position perturbation variables are augmented to the traditional CS‐based model, which allow continuous element placement. Then, a joint sparse recovery approach is used to optimise the excitations and position perturbations of the elements simultaneously. Moreover, the authors implement an extended PCS model with a secondary grid strategy to reduce the modelling error and the computational cost. The proposed design problem is solved with a general sparse recovery solver, named FOCal under‐determined system solver. Numerical results show that the method yields a higher array sparsity, a faster computational speed and a better pattern matching accuracy than the existing CS‐based methods.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Top 10%
Top 10%
Top 10%
Published in a Diamond OA journal