
Millimeter wave (mmWave) systems will likely employ large antennas at both the transmitter and receiver for directional beamforming. Hybrid analog/digital MIMO architectures have been proposed previously for leveraging both array gain and multiplexing gain, while reducing the power consumption in analog-to-digital converters. Channel knowledge is needed to design the hybrid precoders/combiners, which is difficult to obtain due to the large antenna arrays and the frequency selective nature of the channel. In this paper, we propose a sparse recovery based time-domain channel estimation technique for hybrid architecture based frequency selective mmWave systems. The proposed compressed sensing channel estimation algorithm is shown to provide good estimation error performance, while requiring small training overhead. The simulation results show that using multiple RF chains at the receiver and the transmitter further reduces the training overhead.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 41 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
