
Abstract In this paper we consider the two-stage stochastic mixed-integer linear programming problem with recourse, which we call the RP problem. A common way to approximate the RP problem, which is usually formulated in terms of scenarios , is to formulate the so-called Expected Value (EV) problem, which only considers the expectation of the random parameters of the RP problem. In this paper we introduce the Conditional Scenario (CS) problem which represents a midpoint between the RP and the EV problems regarding computational tractability and ability to deal with uncertainty. In the theoretical section we have analyzed some useful bounds related to the RP, EV and CS problems. In the numerical example here presented, the CS problem has outperformed both the EV problem in terms of solution quality, and the RP problem with the same number of scenarios as in the CS problem, in terms of solution time.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 11 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
