Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Multimedia
Article . 2021 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Spatial-Temporal Cascade Autoencoder for Video Anomaly Detection in Crowded Scenes

Authors: Nanjun Li; Faliang Chang; Chunsheng Liu;

Spatial-Temporal Cascade Autoencoder for Video Anomaly Detection in Crowded Scenes

Abstract

Time-efficient anomaly detection and localization in video surveillance still remains challenging due to the complexity of “anomaly”. In this paper, we propose a cuboid-patch-based method characterized by a cascade of classifiers called a spatial-temporal cascade autoencoder (ST-CaAE), which makes full use of both spatial and temporal cues from video data. The ST-CaAE has two main stages, defined by two proposed neural networks: a spatial-temporal adversarial autoencoder (ST-AAE) and a spatial-temporal convolutional autoencoder (ST-CAE). First, the ST-AAE is used to preliminarily identify anomalous video cuboids and exclude normal cuboids. The key idea underlying ST-AAE is to obtain a Gaussian model to fit the distribution of the regular data. Then in the second stage, the ST-CAE classifies the specific abnormal patches in each anomalous cuboid with reconstruction error based strategy that takes advantage of the CAE and skip connection. A two-stream framework is utilized to fuse the appearance and motion cues to achieve more complete detection results, taking the gradient and optical flow cuboids as inputs for each stream. The proposed ST-CaAE is evaluated using three public datasets. The experimental results verify that our framework outperforms other state-of-the-art works.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    109
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
109
Top 1%
Top 10%
Top 0.1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!