
Time-efficient anomaly detection and localization in video surveillance still remains challenging due to the complexity of “anomaly”. In this paper, we propose a cuboid-patch-based method characterized by a cascade of classifiers called a spatial-temporal cascade autoencoder (ST-CaAE), which makes full use of both spatial and temporal cues from video data. The ST-CaAE has two main stages, defined by two proposed neural networks: a spatial-temporal adversarial autoencoder (ST-AAE) and a spatial-temporal convolutional autoencoder (ST-CAE). First, the ST-AAE is used to preliminarily identify anomalous video cuboids and exclude normal cuboids. The key idea underlying ST-AAE is to obtain a Gaussian model to fit the distribution of the regular data. Then in the second stage, the ST-CAE classifies the specific abnormal patches in each anomalous cuboid with reconstruction error based strategy that takes advantage of the CAE and skip connection. A two-stream framework is utilized to fuse the appearance and motion cues to achieve more complete detection results, taking the gradient and optical flow cuboids as inputs for each stream. The proposed ST-CaAE is evaluated using three public datasets. The experimental results verify that our framework outperforms other state-of-the-art works.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 109 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 0.1% |
