Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Qatar University Ins...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/globec...
Article . 2021 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Patient-Driven Network Selection in multi-RAT Health Systems Using Deep Reinforcement Learning

Authors: Dawoud, Heba D.M.; Allahham, Mhd Saria; Abdellatif, Alaa Awad; Mohamed, Amr; Erbad, Aiman; Guizani, Mohsen;

Patient-Driven Network Selection in multi-RAT Health Systems Using Deep Reinforcement Learning

Abstract

The recent pandemic along with the rapid increase in the number of patients that require continuous remote monitoring imposes several challenges to support the high quality of services (QoS) in remote health applications. Remote-health (r-health) systems typically demand intense data collection from different locations within a strict time constraint to support sustainable health services. On the contrary, the end-users with mobile devices have limited batteries that need to run for a long time, while continuously acquiring and transmitting health-related information. Thus, this paper proposes an adaptive deep reinforcement learning (DRL) framework for network selection over heteroge-neous r-health systems to enable continuous remote monitoring for patients with chronic diseases. The proposed framework allows for selecting the optimal network(s) that maximizes the accumulative reward of the patients while considering the patients' state. Moreover, it adopts an adaptive compression scheme at the patient level to further optimize the energy consumption, cost, and latency. Our results depict that the proposed framework outperforms the state-of-the-art techniques in terms of battery lifetime and reward maximization. This work was made possible by NPRP grant # NPRP12S-0305-190231 from the Qatar National Research Fund (a member of Qatar Foundation). The findings achieved herein are solely the responsibility of the authors.

Keywords

deep reinforcement learning, Remote monitoring, heterogeneous network, Internet of Things

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green