Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://dx.doi.org/10.48550/ar...
Article . 2022
License: CC BY
Data sources: Datacite
DBLP
Conference object
Data sources: DBLP
DBLP
Article
Data sources: DBLP
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

PaC-trees: supporting parallel and compressed purely-functional collections

Authors: Laxman Dhulipala; Guy E. Blelloch; Yan Gu 0001; Yihan Sun 0001;

PaC-trees: supporting parallel and compressed purely-functional collections

Abstract

Many modern programming languages are shifting toward a functional style for collection interfaces such as sets, maps, and sequences. Functional interfaces offer many advantages, including being safe for parallelism and providing simple and lightweight snapshots. However, existing high-performance functional interfaces such as PAM, which are based on balanced purely-functional trees, incur large space overheads for large-scale data analysis due to storing every element in a separate node in a tree. This paper presents PaC-trees, a purely-functional data structure supporting functional interfaces for sets, maps, and sequences that provides a significant reduction in space over existing approaches. A PaC-tree is a balanced binary search tree which blocks the leaves and compresses the blocks using arrays. We provide novel techniques for compressing and uncompressing the blocks which yield practical parallel functional algorithms for a broad set of operations on PaC-trees such as union, intersection, filter, reduction, and range queries which are both theoretically and practically efficient. Using PaC-trees we designed CPAM, a C++ library that implements the full functionality of PAM, while offering significant extra functionality for compression. CPAM consistently matches or outperforms PAM on a set of microbenchmarks on sets, maps, and sequences while using about a quarter of the space. On applications including inverted indices, 2D range queries, and 1D interval queries, CPAM is competitive with or faster than PAM, while using 2.1--7.8x less space. For static and streaming graph processing, CPAM offers 1.6x faster batch updates while using 1.3--2.6x less space than the state-of-the-art graph processing system Aspen.

This is a preliminary version of a paper that will appear at the ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2022)

Keywords

FOS: Computer and information sciences, Computer Science - Distributed, Parallel, and Cluster Computing, Computer Science - Data Structures and Algorithms, Data Structures and Algorithms (cs.DS), Distributed, Parallel, and Cluster Computing (cs.DC)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Top 10%
Green