Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Финансы: теория и пр...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Predicting Financial Market Volatility with Modern Model and Traditional Model

Authors: R. G. Aldeki;

Predicting Financial Market Volatility with Modern Model and Traditional Model

Abstract

The major topic investigates how classical methods (ARCH and GARCH) and well-known machine learning algorithms, support vector regression, and hybrid methods. This paper aims to predict and forecast volatility to develop a two-stage forecasting approach the volatility of the Amman Stock Exchange Index (ASE) effectively. Additionally, the effectiveness of the machine learning techniques’ selection and utilization of information in stock data is evaluated. Methods the semiparametric estimating technique known as support vector regression (SVR) has been widely used for the prediction of volatility in financial time series. By integrating SVR with the GARCH model (GARCH-SVR) application with various kernels (Radial Basis Kernel Function (RBF), Polynomial Kernel Function (PF), and linear Kernel Function (lF)). The suggested learning approaches are compared to two well-known statistical time series models, Autoregressive Conditional Heteroskedasticity (ARCH) and Generalized Autoregressive Conditional Heteroskedasticity (GARCH), in order to assess the assertion that they can properly anticipate ASE volatility. To compare their results, RMSE is employed as an error metric. There is evidence that the GARCH-SVR model performs best for predicting volatility time series, and classical volatility model techniques have an enormous predictive performance better than machine learning models.

Related Organizations
Keywords

arch, garch-svr, garch, volatility forecasting, HG1-9999, classical volatility models, hybrid model, machine learning models, support vector regression, Finance

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold