
Various evolutionary multiobjective optimization algorithms (EMOAs) have adopted indicator-based selection operators that augment or replace dominance ranking with quality indicators. A quality indicator measures the goodness of each solution candidate. Many quality indicators have been proposed with the intention to capture different preferences in optimization. Therefore, indicator-based selection operators tend to have biased selection pressures that evolve solution candidates toward particular regions in the objective space. An open question is whether a set of existing indicator based selection operators can create a single operator that outperforms those existing ones. To address this question, this paper studies a method to aggregate (or boost) existing indicator-based selection operators. Experimental results show that a boosted selection operator outperforms exiting ones in optimality, diversity and convergence velocity. It also exhibits robustness against different characteristics in different optimization problems and yields stable performance to solve them.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
