Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Signal Processi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Signal Processing Letters
Article . 2015 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Accurate Human Pose Estimation by Aggregating Multiple Pose Hypotheses Using Modified Kernel Density Approximation

Authors: Cho, E; Kim, D;

Accurate Human Pose Estimation by Aggregating Multiple Pose Hypotheses Using Modified Kernel Density Approximation

Abstract

This letter proposes an accurate human pose estimation method that uses a modified kernel density approximation (m-KDA) to multiple pose hypotheses. Existing methods show poor human pose estimation because of cluttered background or self-occlusion by the human. To improve the pose estimation accuracy, we propose to use m-KDA to aggregate multiple pose estimation results. First, we use the flexible mixture-of-parts model (FMM) to estimate the human poses then use the top-M scores to choose the good pose hypotheses. Second, we aggregate the top-M pose hypotheses with the m-KDA, in which each kernel density function is modified by each pose’s score value and each pose’s compatibility function that represents how far each pose hypothesis is departed from the nominal value of top-M pose hypotheses. Third, we determine the optimal pose configuration by repeating the above m-KDA computation, starting from the root part (head) to the leaf parts (hands and feet), sequentially. In pose estimation experiments on two benchmark datasets (PARSE and LSP), the proposed method achieved 1.5-4.0% improvement in the percentage of correct localized parts (PCP) over the state-of-the-art methods.

Related Organizations
Keywords

histogram of gradients, PICTORIAL STRUCTURES, MODELS, RECOGNITION, stickman model, Compatibility function, flexible mixture-of-parts model

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!