
Class imbalance problem in datasets can lead to biased classification decisions in favor of majority class samples. Additionally, class overlap can cause fuzzy classification boundaries, affecting the performance of classification algorithms. To address these issues, we propose a hybrid sampling method based on conditional tabular generative adversarial network (CTGAN) and K-nearest neighbor (KNN) algorithm. Firstly, we introduce an oversampling algorithm, named DB-CTGAN, based on CTGAN. This algorithm filters noisy and boundary samples using the density-based spatial clustering of applications with noise (DBSCAN) clustering algorithm and generates synthetic samples that conform to the real data distribution using CTGAN. Finally, we combine the expanded fraudulent samples generated by DB-CTGAN with the normal samples and use the KNN overlap undersampling algorithm to remove the samples in the overlap region, solving the class overlap problem. Experimental results show that compared with eight sampling methods using four standard classification models (Random Forest, Decision Tree, Support Vector Classification, and XGBoost), the proposed method significantly improves the F1, AUC, and G-mean metrics on five real datasets.
conditional tabular generative adversarial network, hybrid sampling, Imbalanced Data Classification, Deep learning, Imbalanced data, K-nearest neighbor algorithm, class overlap
conditional tabular generative adversarial network, hybrid sampling, Imbalanced Data Classification, Deep learning, Imbalanced data, K-nearest neighbor algorithm, class overlap
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
