Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The European Physical Journal Special Topics
Article . 2024 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2024
License: CC BY
Data sources: Datacite
versions View all 3 versions
addClaim

Searches for the BSM scenarios at the LHC using decision tree-based machine learning algorithms: a comparative study and review of random forest, AdaBoost, XGBoost and LightGBM frameworks

Authors: Arghya Choudhury; Arpita Mondal; Subhadeep Sarkar;

Searches for the BSM scenarios at the LHC using decision tree-based machine learning algorithms: a comparative study and review of random forest, AdaBoost, XGBoost and LightGBM frameworks

Abstract

Machine learning algorithms are now being extensively used in our daily lives, spanning across diverse industries as well as academia. In the field of high energy physics (HEP), the most common and challenging task is separating a rare signal from a much larger background. The boosted decision tree (BDT) algorithm has been a cornerstone of the high energy physics for analyzing event triggering, particle identification, jet tagging, object reconstruction, event classification, and other related tasks for quite some time. This article presents a comprehensive overview of research conducted by both HEP experimental and phenomenological groups that utilize decision tree algorithms in the context of the Standard Model and Supersymmetry (SUSY). We also summarize the basic concept of machine learning and decision tree algorithm along with the working principle of \texttt{Random Forest}, \texttt{AdaBoost} and two gradient boosting frameworks, such as \texttt{XGBoost}, and \texttt{LightGBM}. Using a case study of electroweakino productions at the high luminosity LHC, we demonstrate how these algorithms lead to improvement in the search sensitivity compared to traditional cut-based methods in both compressed and non-compressed R-parity conserving SUSY scenarios. The effect of different hyperparameters and their optimization, feature importance study using SHapley values are also discussed in detail.

Published in EPJST

Keywords

High Energy Physics - Phenomenology, Computational Physics, High Energy Physics - Experiment (hep-ex), High Energy Physics - Phenomenology (hep-ph), FOS: Physical sciences, Computational Physics (physics.comp-ph), High Energy Physics - Experiment

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Top 10%
Top 10%
Top 1%
Green