Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2021
Data sources: DOAJ
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Neural Episodic Control-Based Adaptive Modulation and Coding Scheme for Inter-Satellite Communication Link

Authors: Donggu Lee; Young Ghyu Sun; Isaac Sim; Jae-Hyun Kim; Yoan Shin; Dong In Kim; Jin Young Kim 0001;

Neural Episodic Control-Based Adaptive Modulation and Coding Scheme for Inter-Satellite Communication Link

Abstract

Inter-satellite links (ISLs) play an important role in the global navigation satellite system (GNSS), which is known as one of the key technologies for the next generation of navigation satellite systems. Deep reinforcement learning algorithms have achieved significant improvement over various wireless communications systems. However, it has been reported that deep Q network (DQN) algorithm requires an enormous number of trials. To resolve this problem, in this paper we propose an adaptive modulation and coding scheme based on a neural episodic control (NEC) algorithm, which is one of deep reinforcement learning algorithms. The proposed scheme adjusts the modulation and coding scheme region boundaries with a differentiable neural dictionary of the NEC agent, which enables the effective integration of the previous experience. In addition, we propose a step-size varying algorithm to encourage the NEC agent to efficiently approach the suboptimal state. We confirm that the proposed scheme can reduce the number of trials to 1/8 compared to the previous work of the DQN-based adaptive modulation scheme. It is also confirmed that the proposed scheme requires the number of trials to the suboptimal state 1/5 of the fixed step-size dueling double DQN and 1/7 of the fixed step-size double DQN-based schemes, respectively. To further evaluate the proposed scheme, we employ an online learning loss evaluation algorithm that calculates the loss in time-step based on interaction records of the reinforcement learning agent and the derived modulation and coding scheme region boundaries.

Related Organizations
Keywords

reinforcement learning, inter-satellite communications, deep learning, Adaptive modulation and coding, Electrical engineering. Electronics. Nuclear engineering, neural episodic control, TK1-9971

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold