Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Magnetic Resonance i...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Magnetic Resonance in Medicine
Article . 2018 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Accelerated 3D T2 mapping with dictionary‐based matching for prostate imaging

Authors: Elisa Roccia; Rohini Vidya Shankar; Radhouene Neji; Gastão Cruz; Camila Munoz; René Botnar; Vicky Goh; +2 Authors

Accelerated 3D T2 mapping with dictionary‐based matching for prostate imaging

Abstract

PurposeTo develop a fast and accurate method for 3D T2 mapping of prostate cancer using undersampled acquisition and dictionary‐based fitting.Methods3D high‐resolution T2‐weighted images (0.9 × 0.9 × 3 mm3) were obtained with a multishot T2‐prepared balanced steady‐state free precession (T2‐prep‐bSSFP) acquisition sequence using a 3D variable density undersampled Cartesian trajectory. Each T2‐weighted image was reconstructed using total variation regularized sensitivity encoding. A flexible simulation framework based on extended phase graphs generated a dictionary of magnetization signals, which was customized to the proposed sequence. The dictionary was matched to the acquired T2‐weighted images to retrieve quantitative T2 values, which were then compared to gold‐standard spin echo acquisition values using monoexponential fitting. The proposed approach was validated in simulations and a T1/T2 phantom, and feasibility was tested in 8 healthy subjects.ResultsThe simulation analysis showed that the proposed T2 mapping approach is robust to noise and typically observed T1 variations. T2 values obtained in the phantom with T2prep‐bSSFP and the acquisition‐specific, dictionary‐based matching were highly correlated with the gold‐standard spin echo method (r = 0.99). Furthermore, no differences were observed with the accelerated acquisition compared to the fully sampled acquisition (r = 0.99). T2 values obtained in prostate peripheral zone, central gland, and muscle in healthy subjects (age, 26 ± 6 years) were 97 ± 14, 76 ± 7, and 36 ± 3 ms, respectively.Conclusion3D quantitative T2 mapping of the whole prostate can be achieved in 3 minutes.

Keywords

Adult, Male, 610, Signal-To-Noise Ratio, quantitative MRI, Magnetics, Young Adult, Imaging, Three-Dimensional, 616, Image Interpretation, Computer-Assisted, Image Processing, Computer-Assisted, Humans, Computer Simulation, T mapping, 3T MRI, Phantoms, Imaging, Prostate, Prostatic Neoplasms, Reproducibility of Results, Magnetic Resonance Imaging, Healthy Volunteers, Feasibility Studies, prostate cancer imaging, Algorithms

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Average
Top 10%
Green
bronze