Downloads provided by UsageCounts
Abstract We introduce a distributed optimization method for improving the computational efficiency of real-time traffic management approaches for large-scale railway networks. We first decompose the whole network into a pre-defined number of regions by using an integer linear optimization approach. For each resulting region, a mixed-integer linear programming approach is used to address the traffic management problem, with micro details of the network and incorporated with the train control problem. For handling the interactions among regions, an alternating direction method of multipliers (ADMM) algorithm based solution approach is developed to solve the subproblem of each region through coordination with the other regions in an iterative manner. A priority rule based solution approach is proposed to generate feasible suboptimal solutions, in case of lack of convergence. Numerical experiments are conducted based on the Dutch railway network to show the performance of the proposed solution approaches, in terms of effectiveness and efficiency. We also show the trade-off between solution quality and computational efficiency.
Decomposition, 000, Mixed-integer linear programming (MILP), Alternating direction method of multipliers (ADMM) algorithm, Real-time railway traffic management, clustering, Distributed optimization
Decomposition, 000, Mixed-integer linear programming (MILP), Alternating direction method of multipliers (ADMM) algorithm, Real-time railway traffic management, clustering, Distributed optimization
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 70 | |
| downloads | 21 |

Views provided by UsageCounts
Downloads provided by UsageCounts