
Recent years have seen the rapid growing market of smart phones. At the same time, pirated, knockoff or refurnished phones have also flooded into the worldwide market and inflicted great loss on the mobile phone industry. Existing anti-counterfeiting, authentification and identification methods, which rely on the verification of the IDs stored in the phone memory, are vulnerable to attack. This paper presents a new CMOS image sensor based physical unclonable function (PUF) for smart phone identification and anti-counterfeiting. The proposed PUF exploits the intrinsic imperfection during the image sensor manufacturing process to generate the unique signatures. With the proposed differential readout algorithm for the pixels of the fixed pattern noise, the effects of power supply and temperature variations are suppressed. Simulations on a typical 3-T CMOS image sensor in GF 65nm CMOS technology show that the proposed PUF can generate robust and reliable challenge-response pairs with an uniqueness of 50.12% and a reliability of 100% at temperature varying from 0°C to 100°C and supply voltage variation of ±16.7%.
:Engineering::Computer science and engineering::Hardware::Integrated circuits [DRNTU]
:Engineering::Computer science and engineering::Hardware::Integrated circuits [DRNTU]
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
