Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/ccgrid...
Article . 2022 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2022
License: CC BY
Data sources: Datacite
DBLP
Article
Data sources: DBLP
DBLP
Conference object
Data sources: DBLP
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Serverless Engine for High Energy Physics Distributed Analysis

Authors: Jacek Kusnierz; Vincenzo Eduardo Padulano; Maciej Malawski; Kamil Burkiewicz; Enric Tejedor Saavedra; Pedro Alonso-Jordá; Michael Pitt; +1 Authors

A Serverless Engine for High Energy Physics Distributed Analysis

Abstract

The Large Hadron Collider (LHC) at CERN has generated in the last decade an unprecedented volume of data for the High-Energy Physics (HEP) field. Scientific collaborations interested in analysing such data very often require computing power beyond a single machine. This issue has been tackled traditionally by running analyses in distributed environments using stateful, managed batch computing systems. While this approach has been effective so far, current estimates for future computing needs of the field present large scaling challenges. Such a managed approach may not be the only viable way to tackle them and an interesting alternative could be provided by serverless architectures, to enable an even larger scaling potential. This work describes a novel approach to running real HEP scientific applications through a distributed serverless computing engine. The engine is built upon ROOT, a well-established HEP data analysis software, and distributes its computations to a large pool of concurrent executions on Amazon Web Services Lambda Serverless Platform. Thanks to the developed tool, physicists are able to access datasets stored at CERN (also those that are under restricted access policies) and process it on remote infrastructures outside of their typical environment. The analysis of the serverless functions is monitored at runtime to gather performance metrics, both for data- and computation-intensive workloads.

10 pages, CCGRID 2022

Keywords

FOS: Computer and information sciences, Computer Science - Distributed, Parallel, and Cluster Computing, Distributed, Parallel, and Cluster Computing (cs.DC)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green