
doi: 10.1093/gji/ggad362
handle: 20.500.11824/1732
SUMMARY Estimating subsurface properties from geophysical measurements is a common inverse problem. Several Bayesian methods currently aim to find the solution to a geophysical inverse problem and quantify its uncertainty. However, most geophysical applications exhibit more than one plausible solution. Here, we propose a multimodal variational autoencoder model that employs a mixture of truncated Gaussian densities to provide multiple solutions, along with their probability of occurrence and a quantification of their uncertainty. This autoencoder is assembled with an encoder and a decoder, where the first one provides a mixture of truncated Gaussian densities from a neural network, and the second is the numerical solution of the forward problem given by the geophysical approach. The proposed method is illustrated with a 1-D magnetotelluric inverse problem and recovers multiple plausible solutions with different uncertainty quantification maps and probabilities that are in agreement with known physical observations.
Magnetotellurics, Numerical modelling, Probabilistic forecasting, Variational autoencoder, Inverse theory, Multimodal Models, Statistical method
Magnetotellurics, Numerical modelling, Probabilistic forecasting, Variational autoencoder, Inverse theory, Multimodal Models, Statistical method
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
