
Abstract This paper presents a new fractal search space decomposition-based algorithm to address the issue of scaling up the divide and conquer approach to deal with large scale problems (up to 50 continuous decision variables). The proposed algorithm, called polyFrac, fractally decomposes the search space using hyper-polytopes. It allows moving throughout different granularity levels by only computing the average of vertices of a hyper-polytope to obtain the coordinates of the centroids. Only the most promising hyper-polytopes are decomposed into child-polytopes. Then, a simple deterministic local search (single solution-based metaheuristic) is used to perform the intensification process to find the best solution within the selected lowest hyper-polytope. The proposed algorithm performance is evaluated on the well-known SOCO 2011, CEC 2013, and CEC 2017 benchmarks and compared with 26 states of the art algorithms. A real-world optimization problem is also used to calibrate its performance. The obtained results show that polyFrac outperforms all the algorithms. Moreover, experimental results and analysis suggest that polyFrac is a highly competitive optimization algorithm for solving large-scale and complex optimization problems.
[MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC]
[MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC]
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
