
AbstractIn this paper, a novel algorithm is presented for direction of arrival (DOA) estimation and array self-calibration in the presence of unknown mutual coupling. In order to highlight the relationship between the array output and mutual coupling coefficients, we present a novel model of the array output with the unknown mutual coupling coefficients. Based on this model, we use the space alternating generalized expectation-maximization (SAGE) algorithm to jointly estimate the DOA parameters and the mutual coupling coefficients. Unlike many existing counterparts, our method requires neither calibration sources nor initial calibration information. At the same time, our proposed method inherits the characteristics of good convergence and high estimation precision of the SAGE algorithm. By numerical experiments we demonstrate that our proposed method outperforms the existing method for DOA estimation and mutual coupling calibration.
Mechanical Engineering, Aerospace Engineering, Direction of arrival estimation, Mutual coupling, Space alternating generalized expectation-maximization algorithm, Convergence, Array self-calibration
Mechanical Engineering, Aerospace Engineering, Direction of arrival estimation, Mutual coupling, Space alternating generalized expectation-maximization algorithm, Convergence, Array self-calibration
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
