
arXiv: 2507.01668
The field of numerical optimization has recently seen a surge in the development of "novel" metaheuristic algorithms, inspired by metaphors derived from natural or human-made processes, which have been widely criticized for obscuring meaningful innovations and failing to distinguish themselves from existing approaches. Aiming to address these concerns, we investigate the applicability of statistical tests for comparing algorithms based on their search behavior. We utilize the cross-match statistical test to compare multivariate distributions and assess the solutions produced by 114 algorithms from the MEALPY library. These findings are incorporated into an empirical analysis aiming to identify algorithms with similar search behaviors.
FOS: Computer and information sciences, Artificial Intelligence (cs.AI), Artificial Intelligence, Neural and Evolutionary Computing, Neural and Evolutionary Computing (cs.NE)
FOS: Computer and information sciences, Artificial Intelligence (cs.AI), Artificial Intelligence, Neural and Evolutionary Computing, Neural and Evolutionary Computing (cs.NE)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
