Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2024
Data sources: DOAJ
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Wearable Sensor-Based Exercise Monitoring System for Higher Education Students Using a Multi-Attribute Fuzzy Evaluation Model

Authors: Shiping Yu; Xiaowei Peng;

Wearable Sensor-Based Exercise Monitoring System for Higher Education Students Using a Multi-Attribute Fuzzy Evaluation Model

Abstract

Exercise and Physical Activity are important factors to improve the student's health and academic status. Student exercise should be continuously monitored to eliminate risk factors and health issues. The previous monitoring system faced difficulties while handling the vast amount of data obtained from multiple sensors because it was affected by uncertainty and noise issues. The research difficulties are addressed with the help of the Multi-Attribute Fuzzy Evaluation Model (MAFEM), which monitors student's health using sensor data. The MAFEM approach uses the fuzzy set and fuzzy logic to derive the relationship between the features. In addition, the method uses preprocessing, fuzzification, defuzzification and rule evaluation processes. These steps are adjusted according to the threshold value that maximizes the personalization and holistic assessment efficiency because the system uses multiple attributes. During the analysis, MM-Fit dataset information is utilized to evaluate the system efficiency in which the system ensures the minimum computation complexity $O\left ({{ r.m.n }}\right)$ and minimum latency value $\left ({{ \approx 70mAh }}\right)$ .. In addition, the accuracy metrics are also applied to evaluate the system's effectiveness, with 97.11% precision, 0.23 RMSE and 0.26 MSE values.

Related Organizations
Keywords

multiattribute, fuzzification, MM-Fit dataset, higher education students, Defuzzification, Electrical engineering. Electronics. Nuclear engineering, computation complexity and latency, TK1-9971

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold