Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Pattern Recognition Letters
Article . 2025 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2025
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
DBLP
Article
Data sources: DBLP
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Completely weakly supervised class-incremental learning for semantic segmentation

Authors: David Minkwan Kim; Soeun Lee; Byeongkeun Kang;

Completely weakly supervised class-incremental learning for semantic segmentation

Abstract

This work addresses the task of completely weakly supervised class-incremental learning for semantic segmentation to learn segmentation for both base and additional novel classes using only image-level labels. While class-incremental semantic segmentation (CISS) is crucial for handling diverse and newly emerging objects in the real world, traditional CISS methods require expensive pixel-level annotations for training. To overcome this limitation, partially weakly-supervised approaches have recently been proposed. However, to the best of our knowledge, this is the first work to introduce a completely weakly-supervised method for CISS. To achieve this, we propose to generate robust pseudo-labels by combining pseudo-labels from a localizer and a sequence of foundation models based on their uncertainty. Moreover, to mitigate catastrophic forgetting, we introduce an exemplar-guided data augmentation method that generates diverse images containing both previous and novel classes with guidance. Finally, we conduct experiments in three common experimental settings: 15-5 VOC, 10-10 VOC, and COCO-to-VOC, and in two scenarios: disjoint and overlap. The experimental results demonstrate that our completely weakly supervised method outperforms even partially weakly supervised methods in the 15-5 VOC and 10-10 VOC settings while achieving competitive accuracy in the COCO-to-VOC setting.

8 pages

Keywords

FOS: Computer and information sciences, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green