Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Measurement Science ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Measurement Science Review
Article . 2025 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Measurement Science Review
Article . 2025
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optimization Driven Variational Autoencoder GAN for Artifact Reduction in EEG Signals for Improved Neurological Disorder and Disability Assessment

Authors: Mohamed Yacin Sikkandar; S. Sabarunisha Begum; Ahmad Alassaf; Ibrahim AlMohimeed; Khalid Alhussaini; Adham Aleid; Abdulrahman Khalid Alhaidar;

Optimization Driven Variational Autoencoder GAN for Artifact Reduction in EEG Signals for Improved Neurological Disorder and Disability Assessment

Abstract

Abstract This study introduces an innovative method for minimizing artifacts in electroencephalography (EEG) signals by integrating brainstorm optimization (BSO) with a variational autoencoder generative adversarial network (VAE-GAN), resulting in the BrOpt_VAGAN model. EEG signals are critical for the diagnosis of neurological disorders, for brain-computer interface (BCI) applications, and for the monitoring of neurological disabilities. However, EEG data often contains artifacts from physiological sources — such as electrooculographic (EOG), electromyographic (EMG), and electrocardiographic (ECG) signals — which can distort the accuracy of brain activity readings. Our proposed BrOpt_VAGAN model combines BSO with a VAE-GAN framework to more effectively remove these artifacts, thus improving the clarity and accuracy of EEG signals. In this model, the VAE first reduces the raw EEG signals into a lower-dimensional representation that captures the essential signal patterns while filtering out the noise. The GAN component then refines this representation via adversarial training, effectively minimizing artifacts and improving the quality of the processed EEG data. BSO optimally adjusts the encoding and decoding parameters within the VAE-GAN structure, enabling the model to handle different noise levels and helps to find different neurological disorders. Preliminary results show that BrOpt_VAGAN performs significantly better with an accuracy of 98.5 % and an error rate of 11.23 %, enabling a clearer and more precise EEG signal reconstruction.

Related Organizations
Keywords

random noise, artefacts, emg, neural network, ecg, QA1-939, eeg, fractional calculus, optimization, Mathematics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold