Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://opus.lib.uts...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/tcc.20...
Article . 2020 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hybrid Tree-Rule Firewall for High Speed Data Transmission

Authors: Thawatchai Chomsiri; Xiangjian He; Priyadarsi Nanda; Zhiyuan Tan 0001;

Hybrid Tree-Rule Firewall for High Speed Data Transmission

Abstract

Traditional firewalls employ listed rules in both configuration and process phases to regulate network traffic. However, configuring a firewall with listed rules may create rule conflicts, and slows down the firewall. To overcome this problem, we have proposed a Tree-rule firewall in our previous study. Although the Tree-rule firewall guarantees no conflicts within its rule set and operates faster than traditional firewalls, keeping track of the state of network connections using hashing functions incurs extra computational overhead. In order to reduce this overhead, we propose a hybrid Tree-rule firewall in this paper. This hybrid scheme takes advantages of both Tree-rule firewalls and traditional listed-rule firewalls. The GUIs of our Tree-rule firewalls are utilized to provide a means for users to create conflict-free firewall rules, which are organized in a tree structure and called 'tree rules'. These tree rules are later converted into listed rules that share the merit of being conflict-free. Finally, in decision making, the listed rules are used to verify against packet header information. The rules which have matched with most packets are moved up to the top positions by the core firewall. The mechanism applied in this hybrid scheme can significantly improve the functional speed of a firewall.

Country
Netherlands
Related Organizations
Keywords

cloud network, high speed firewall, 004 Data processing & computer science, QA75 Electronic computers. Computer science, Culture and Communities, Firewall, Firewalls (computing), Cloud computing, IP networks, Field programmable gate arrays, Filtering, Ports (Computers), Cyber-security, AI and Technologies, network security, Centre for Distributed Computing, Networking and Security, Networks, computer network

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Top 10%
Top 10%
Green
bronze