
AbstractA locally convex space E is said to be ordered suprabarrelled if given any increasing sequence of subspaces of E covering E there is one of them which is suprabarrelled. In this paper we show that the space m0(X, Σ), where X is any set and Σ is a σ-algebra on X, is ordered suprabarrelled, given an affirmative answer to a previously raised question. We also include two applications of this result to the theory of vector measures.
Barrelled spaces, bornological spaces, ordered suprabarrelled space, Set functions and measures on spaces with additional structure
Barrelled spaces, bornological spaces, ordered suprabarrelled space, Set functions and measures on spaces with additional structure
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
