
handle: 10722/134618
AbstractUpdating a Delaunay triangulation when data points are slightly moved is the bottleneck of computation time in variational methods for mesh generation and remeshing. Utilizing the connectivity coherence between two consecutive Delaunay triangulations for computation speedup is the key to solving this problem. Our contribution is an effective filtering technique that confirms most bi‐cells whose Delaunay connectivities remain unchanged after the points are perturbed. Based on bi‐cell flipping, we present an efficient algorithm for updating two‐dimensional and three‐dimensional Delaunay triangulations of dynamic point sets. Experimental results show that our algorithm outperforms previous methods.
I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling - Geometric algorithms, languages, and systems, languages, I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling - Geometric algorithms, and systems
I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling - Geometric algorithms, languages, and systems, languages, I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling - Geometric algorithms, and systems
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
